Středa, 18 září, 2024

Průlom Stockholmské univerzity, laser dokáže přeměnit materiály na magnetické při pokojové teplotě

FyzikaTOP 10VědaVšechny články
Foto: NADACE KNUTA A ALICE WALLENBERGOVÝCH/MAGNUS BERGSTRÖM/Volný zdroj z tiskové zprávy
STEFANO BONETTI VE SVÉ LABORATOŘI NA STOCKHOLMSKÉ UNIVERZITĚ.

Potenciál kvantové technologie je obrovský, ale dnes je z velké části omezen na extrémně chladná prostředí v laboratoři. Nyní se vědcům ze Stockholmské univerzity, Severského institutu pro teoretickou fyziku a Univerzity Ca‘ Foscari v Benátkách podařilo vůbec poprvé prokázat, jak může laserové světlo vyvolat kvantové chování při pokojové teplotě a učinit nemagnetické materiály magnetickými.

Očekává se, že tento průlom vydláždí cestu pro rychlejší a energeticky účinnější počítače, přenos informací a ukládání dat. Vědci předpokládají, že během několika desetiletí pokrok kvantové technologie způsobí revoluci v několika nejdůležitějších oblastech společnosti a připraví cestu pro zcela nové technologické možnosti v oblasti komunikace a energetiky.

Primární zájem pro výzkumníky v této oblasti jsou zvláštní a bizarní vlastnosti kvantových částic, které se zcela odchylují od zákonů klasické fyziky a mohou učinit materiály magnetickými nebo supravodivými. Zvýšením pochopení toho, jak a proč přesně tento typ kvantových stavů vzniká, je cílem být schopen řídit a manipulovat s materiály za účelem získání kvantově mechanických vlastností. 

Dosud byli vědci schopni vyvolat kvantové chování, jako je magnetismus a supravodivost, pouze při extrémně nízkých teplotách. Proto je potenciál kvantového výzkumu stále omezen na laboratorní prostředí. Nyní výzkumný tým ze Stockholmské univerzity ve spolupráci s dalšími univerzitami z dalších zemí, jsou prvními na světě, kteří v experimentu demonstrují, jak může laserové světlo vyvolat magnetismus v nemagnetickém materiálu při pokojové teplotě.

„Inovace této metody spočívá v konceptu nechat světlo pohybovat atomy a elektrony v tomto materiálu kruhovým pohybem, aby se generovaly proudy, díky nimž je materiál magnetický jako magnet lednice. Dokázali jsme to udělat vývojem nového světelného zdroje ve vzdálené infračervené oblasti s polarizací, která má tvar „vývrtky“. Je to poprvé, co se nám v experimentu podařilo navodit a jasně vidět, jak se materiál při pokojové teplotě stává magnetickým. Kromě toho náš přístup umožňuje vyrábět magnetické materiály z mnoha izolátorů, přičemž magnety jsou obvykle vyrobeny z kovů. Z dlouhodobého hlediska to otevírá zcela nové aplikace ve společnosti,“ říká vedoucí výzkumu Stefano Bonetti ze Stockholmské univerzity a z Ca‘ Foscari University of Venice.

Metoda je založena na teorii „dynamické multiferroicity“, která předpovídá, že když se atomy titanu „rozvíří“ kruhově polarizovaným světlem v oxidu na bázi titanu a stroncia, vytvoří se magnetické pole. Ale teprve nyní lze teorii potvrdit v praxi. Očekává se, že průlom bude mít široké uplatnění v několika informačních technologiích.

Severský institut pro teoretickou fyziku (NORDITA) je institut pro spolupráci mezi pěti severskými zeměmi. Od roku 2007 se Nordita nachází v univerzitním kampusu Albanova ve Stockholmu, přičemž hostitelskými univerzitami jsou Stockholmská univerzita a KTH Royal Institute of Technology.

Výzkumný tým ze Stockholmské univerzity, Nordic Institute of Theoretical Physics (NORDITA)* ve Švédsku, University of Connecticut a SLAC National Accelerator Laboratory v USA, National Institute for Materials Science v Tsukuba, Japonsko, Elettra-Sincrotrone Terst, římská univerzita „Sapenza“ a univerzita Ca‘ Foscari v Benátkách v Itálii.


Článek byl upraven podle tiskové zprávy AAAS, vědecký výzkum naleznete pod značkou DOI10.1038/s41586-024-07175-9

Napsat komentář